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A Computational Framework for Uncertainty
Quantification and Stochastic Optimization in Unit

Commitment With Wind Power Generation
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Abstract—We present a computational framework for inte-
grating a state-of-the-art numerical weather prediction (NWP)
model in stochastic unit commitment/economic dispatch formula-
tions that account for wind power uncertainty. We first enhance
the NWP model with an ensemble-based uncertainty quantifi-
cation strategy implemented in a distributed-memory parallel
computing architecture. We discuss computational issues arising
in the implementation of the framework and validate the model
using real wind-speed data obtained from a set of meteorological
stations. We build a simulated power system to demonstrate the
developments.

Index Terms—Closed-loop, economic dispatch, unit commit-
ment, weather forecasting, wind.
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I. INTRODUCTION

W IND power is becoming worldwide a significant com-
ponent of the power generation portfolio. In Europe,

several countries already exhibit adoption levels in the range of
5%–20% of the total annual demand. In the U.S., an adoption
level of 20% is expected by the year 2030 [1]. Such a large-scale
adoption presents many challenges to the operation of the elec-
trical power grid because wind power is highly intermittent and
difficult to predict. In particular, unit commitment (UC) and eco-
nomic dispatch (ED) operations are of great importance because
of their strong economic impact (on the order of billions of dol-
lars per year) and increasing emissions concerns.

Several UC studies analyzing the impact of increasing adop-
tion levels of wind power have been performed recently. In
[21], a security-constrained stochastic UC formulation that ac-
counts for wind-power volatility is presented together with an
efficient Benders decomposition solution technique. In [19], a
detailed closed-loop stochastic UC formulation is reported. The
authors analyze the impact of the frequency of recommitment
on the production, startup, and shutdown costs. They find that
increasing the recommitment frequency can reduce costs and in-
crease the reliability of the system. None of these previous sto-
chastic optimization studies present details on the wind-power
forecast model and uncertainty information used to support their

conclusions. In [12] and [15], artificial neural network (ANN)
models are used to compute forecasts and confidence intervals
for the total aggregated power for a set of distributed wind gen-
erators. A problem with empirical (data-based) modeling ap-
proaches [5], [20], [22], however, is that their predictive capa-
bilities rely strongly on the presence of persistent trends. In addi-
tion, they neglect the presence of spatio-temporal physical phe-
nomena that can lead to time-varying correlations of the wind
speeds at neighboring locations. Such approaches can thus re-
sult in inaccurate medium- and long-term forecasts and over- or
underestimated uncertainty levels [8], [13], [14], which in turn
affect the expected cost and robustness of the UC solution. A
comparison between uncertainty quantification techniques with
empirical and physical weather prediction models for ambient
temperature forecasting is presented in [23].

In this work, we seek to exploit recent advances in numerical
weather prediction (NWP) models to perform UC/ED studies
with wind-power adoption. The use of physical models is de-
sirable because consistent and accurate uncertainty information
can be obtained [13]. In a previous study, we have found that
NWP models allow one to obtain much tighter uncertainty inter-
vals of temperature forecasts that translate into lower operating
costs in building systems [23]. On the other hand, we have also
found that the practical capabilities of NWP models are lim-
ited. One of the major limiting factors is their computational
complexity. For instance, performing data assimilation every
hour at a high spatial resolution is currently not practical. In
addition, extracting uncertainty information from NWP models
quickly becomes intractable from the point of view of both sim-
ulation time and memory requirements. The question is: From
an operational point of view, how suitable and practical are the
forecasting capabilities of state-of-the-art NWP models? This
is an important question because NWP models are expected to
be used to make real-time operational decisions with impor-
tant economic implications. To analyze this issue, we present
a framework that integrates the Weather Research and Forecast
(WRF) model with a closed-loop stochastic UC/ED formula-
tion. In particular, we are interested in analyzing computational
issues and the effects of wind uncertainty on UC/ED operations.

Arguably, more sophisticated hybrid methods that combine
both NWP wind speed forecasts and empirical models are
needed to map the resolution of NWP forecasts down to a
specific domain and to account for system-specific character-
istics (e.g., power curves, orography) [6], [13], [16]. We point
out, however, that our approach offers several advantages over
previous work involving wind forecast, such as [6] and [16].
The fact that we have control over both the UC/ED model and
the WRF model allows us to refine the wind forecast with un-
certainty as needed. In particular, as presented in Section IV-A,
we can run the WRF at higher resolution than the data in
[6] and [16], and we also have control over the number of
scenarios used. The latter capability can have a large impact
on the UC/ED solution feasibility and efficiency and can be
used in conjunction with the confidence estimation described
in Section III-D either to increase the number of scenarios in
order to improve the uncertainty precision, if needed, or to use
a more calculated conservative solution. Full quantification of
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these benefits is an important medium-term goal of our project.
The goal of this work, however, is to describe the benefits of
the integration framework and for UC/ED problems.

We model the uncertainty of the wind-speed forecasts using
a sampling technique that generates an ensemble of the future
realizations in the targeted geographical region. The ensem-
bles are obtained by using a scalable implementation on a dis-
tributed-memory parallel computing and are sent to a stochastic
UC/ED problem. A resampling technique is developed to as-
sess the quality of the stochastic UC/ED solutions. We validate
the forecasts and spatial correlations using real wind-speed data
obtained from a set of meteorological stations. We also perform
an economic analysis of the impact of increasing adoption levels
of wind power. The novelty of our work lies in the integration
of uncertainty quantification and stochastic optimization, topics
normally analyzed independently. From this integration, we can
analyze the economic effects of forecast accuracy and uncer-
tainty bounds. An additional novelty of our work is a compu-
tational analysis of WRF, which is important in order to under-
stand its limitations and capabilities in an operational setting.

The paper is structured as follows. Section II presents de-
tails on the WRF model and on uncertainty quantification.
Section III describes the stochastic unit commitment formu-
lation and presents a resampling technique used to perform
inference analysis. Section IV presents numerical validation
results for WRF and the closed-loop UC simulation results. We
conclude with a summary and directions for future work.

II. WIND FORECAST AND UNCERTAINTY

ESTIMATION USING WRF

In this section, we describe the procedures used to forecast the
wind speed using WRF. In particular, we present ensemble ini-
tialization and restarting procedures required in an operational
setting. The WRF model [17] is a state-of-the-art numerical
weather prediction system designed to serve both operational
forecasting and atmospheric research needs. WRF is the result
of a multi-agency and university effort to build a highly paral-
lelizable code that can run across scales ranging from large-eddy
to global simulations. WRF has a comprehensive description of
the atmospheric physics that includes cloud parameterization,
land-surface models, atmosphere-ocean coupling, and broad ra-
diation models. The terrain resolution can go up to 30 s of a
degree (less than 1 ).

To initialize the NWP simulations, we use reanalyzed fields,
that is, simulated atmospheric states reconciled with observa-
tions, because the entire atmospheric state space is required by
the model as initial conditions whereas only a small subset of
the state space is available through measurement at any given
time [9]. In particular, we use the North American Regional Re-
analysis (NARR) data set that covers the North American con-
tinent (160W-20W; 10N–80N) with a resolution of 10 min of
a degree, 29 pressure levels (1000-100 hPa, excluding the sur-
face), every 3 h from 1979 until the present. We use an ensemble
of realizations to represent uncertainty in the initial (random)
wind field and propagate it through the WRF nonlinear model.
The initial ensemble is obtained by sampling from an empirical
distribution, a procedure similar to the National Centers for En-
vironmental Prediction (NCEP) method [10]. In the following

sections, we describe in more detail the procedures needed for
generating the forecast and its uncertainty. A similar approach
is presented in [23].

1) Ensemble Initialization: In a normal operational mode,
the NWP system evolves a given state from an initial time to
a final time . The initial state is produced from past simula-
tions and reanalysis fields. Because of observation sparseness in
the atmospheric field and the incomplete numerical representa-
tion of its dynamics, the initial states are not known exactly and
can only be represented statistically. Therefore, we use a distri-
bution of the initial conditions to describe the confidence in the
knowledge of the initial state of the atmosphere. We assume a
normal distribution of the uncertainty field of the initial state,
a typical assumption in weather forecasting. The distribution is
centered on the NARR field at the initial time, the most accurate
information available. In other words, the expectation is exactly
the NARR solution. The second statistical moment of the dis-
tribution described by the covariance matrix is approximated
by the sample variance or pointwise uncertainty and its correla-
tion, . The initial -member ensemble field ,

, is sampled from :

(1)
where and is the variance of variable
. This is equivalent to perturbing the NARR field with .

That is, . In what follows, we describe
the procedure used to estimate the correlation matrix.

2) Estimation of the Correlation Matrix: In weather models,
the correlation structure typically is localized in space. There-
fore, in creating the initial ensemble, one needs to estimate the
spatial scales associated with each variable. To obtain these spa-
tial scales, we build correlation matrices of the forecast errors
using the WRF model. These forecast errors are estimated by
using the NCEP method [10], which is based on starting sev-
eral simulations staggered in time in such a way that, at any
time, two forecasts are available. In particular, we run a month
of day-long simulations started every 12 h so that every 12 h, we
have two forecasts, one started one day before and one started
half-a-day before. The differences between two staggered sim-
ulations is denoted as , that is, the dif-
ference at the th point in space between the th pair of fore-
casts, where is the number of points in space multiplied by
the number of variables of interest. We can then define as the
th row, each of which correspond to the deviations for a single

point in space. Therefore, the covariance matrix can be approx-
imated by . Calculating and storing the entire co-
variance matrix are computationally intractable. Consequently,
we describe the correlation distance at each vertical level and
for each variable by two parameters representing the East-West
and North-South directions. This approach captures the Coriolis
effect and the Earth rotation, as well as faster and larger-scale
winds in the upper atmosphere. We assume that correlations and
winds are roughly similar in nature across the continental U.S.
This process is repeated in the vertical direction. To create the
perturbations from these length scales, we take a normally dis-
tributed noisy field and apply Gaussian filters in each direction
with appropriate length scales to obtain the same effect as in (1).
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3) Ensemble Propagation Through the WRF Model: The ini-
tial state distribution is evolved through the NWP model dy-
namics. The resulting trajectories can then be assembled to ob-
tain an approximation of the forecast covariance matrix:

(2)

where , , and
represents the evolution of the initial condi-

tion through the WRF model from time to time . The
initial condition is perturbed by the additive noise that ac-
counts for the various error sources during the model evolution.
An analysis of the covariance propagation through the model
is given in [23].

In this study, we assume that the numerical model (WRF) is
perfect, that is, , and given the exact real initial condi-
tions, the model produces error-free forecasts. For long predic-
tion windows, this is a strong assumption. In this study, how-
ever, we restrict the forecast windows to no longer than one day
ahead, thus making this assumption reasonable.

4) Accounting for Error Underestimation: In an operational
setting, observations become available periodically and can be
assimilated in the atmospheric state. In order to account for the
new information, the ensemble needs to be recentered on the
new reanalyzed field. In our example, we consider 12-h win-
dows between restarts. However, the errors given by the en-
semble variance may be over- or underestimated because of sim-
ulation and sampling errors. In other words, the ensemble sta-
tistics may diverge from the true statistics. Therefore, the error
levels need to be re-estimated before each initialization. Since
correlations between entries in the state vector are more robustly
estimated—their values are accurate under fewer assumptions
compared to variance—by our approach [9], [23], variance is
the only parameter that needs to be adjusted. One approach is to
consider the reanalyzed field as the true state, for com-
puting corrections purposes only, and require that this solution
be on average within one standard deviation as given by the en-
semble spread. This approach corresponds to finding a factor
that inflates the ensemble spread about its expectation. Let us
consider again the ensemble , and the rean-
alyzed solution . Denote by the

sample expectation and by , , the

standard deviation, where
is the sample covariance estimation. Then, we have

where , , and are the wind-field components and the tem-
perature, the ensemble variables under consideration. For this
comparison, we consider only the first five layers, which include
grid points located below 300 m. The new ensemble is then ob-
tained by , . The factor
is bounded between one, because the model error is underesti-
mated in our case, and four to avoid large jumps in the solution
and destabilize the NWP model. Experimentally, however, we
noticed that , which confirms that this approach tends to
underestimate the uncertainty. This fact is not unexpected be-
cause the model error is not considered.

III. UNIT COMMITMENT AND ECONOMIC DISPATCH

In this section, we describe the unit commitment and eco-
nomic dispatch formulation used and discuss extensions to ac-
count for wind-power uncertainty. The main idea behind our
computational framework is to design a closed-loop UC/ED
strategy using a stochastic programming formulation that incor-
porates weather forecast and uncertainty information from the
WRF model and the ensemble approach described in the pre-
vious section. With this, we explore the accuracy of the fore-
casts and the effect of assimilating measurement information at
different frequencies (WRF model reanalysis).

A. Deterministic Formulation

The UC problem has been studied extensively in literature re-
ports. The interested reader can refer to [3], [7], [18], and [21].
The UC formulation considered here is based on the mixed-in-
teger linear programming (MILP) formulation of Carrion and
Arroyo [3]. The formulation is shown below. The sets

, , and rep-
resent the time periods, thermal units, and wind generators, re-
spectively. The demand at each time period is denoted by ,
and the reserve requirement is . The power output of unit
at time is given by the continuous variable . The expected
value of the output of the wind unit at time , is

approximated by . The continuous variable
represents the maximum power output of unit at time .

This variable is introduced in order to model the spinning re-
serves given by the differences . The units of all the
power outputs are MW. The on/off status of unit at time is
given by the binary variable :

(3a)

(3b)

(3c)

The production cost for each thermal unit is approximated by
using the linear model [2]

(4)

where and are cost coefficients. To model the startup cost
, we use a staircase cost , , where

is the number of intervals. This leads to the following set of
inequality constraints:

(5a)

(5b)

The formulation of the shutdown cost is given by

(6a)

(6b)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CONSTANTINESCU et al.: COMPUTATIONAL FRAMEWORK FOR UNCERTAINTY QUANTIFICATION 5

where is the shutdown cost of unit . The power output of
each unit at each period must satisfy the bounds

(7a)

(7b)

where and are the maximum and minimum capacities of
unit , respectively. The thermal power outputs must also satisfy
the ramp-up limits

(8)

and the shutdown and ramp-down limits are

(9)

Here, , , , and are the ramp-down, ramp-up,
shutdown, and startup limits of unit , respectively. The min-
imum uptime constraints are

(10a)

(10b)

(10c)

where are the minimum uptime limits and
is the number of periods that unit

must be initially ON. The initial state of unit is denoted by
and is a fixed parameter. The minimum downtime constraints
are formulated as

(11a)

(11b)

(11c)

where denote the minimum downtime limits and
is the number of periods that unit

must be initially OFF. Note that it is possible to use this model
to simulate the performance of the economic dispatch problem
by fixing the commitment variables .

B. Stochastic Programming Formulation

We extend the previous deterministic formulation by consid-
ering corrective actions on the power outputs of the thermal gen-

erators to account for the uncertainty in the wind power outputs.
The problem can be cast as a two-stage stochastic programming
problem similar to the ones proposed in [2], [19], and [21]. The
first-stage decision variables are the current thermal power out-
puts , and the commitment profiles over the entire plan-
ning horizon . The power outputs are nonanticipatory (here
and now) because it is assumed that the current wind-power out-
puts are known and given by . To formulate
the second stage, we consider multiple realizations of the wind
power outputs , and we define scenario-dependent thermal
power outputs and with (wait and see). Note
that we do not define second-stage scenario-dependent commit-
ment variables because we wish to keep the problem computa-
tionally tractable. The formulation of the stochastic optimiza-
tion problem is

(12a)

(12b)

(12c)

(12d)

(12e)

where . The ramp and power-limit constraints
are defined over each scenario, , where and

. The nonanticipativity constraints for the power
outputs in the first time step are given by (12d) and (12e). For
the known wind power outputs, we set .
Note that if the stochastic formulation is able to capture the un-
certainty of the wind power accurately, the reserve requirements
can be reduced to less conservative levels or even be removed.
Note also that one can solve a closed-loop stochastic dispatch
problem by fixing the commitment actions.

C. Closed-Loop Implementation

To simulate the closed-loop performance of the power
system, we consider a rolling-shrinking horizon approach.
The starting rolling time is reset to one each time new fossil
fuel and electricity price information is obtained from the
commodity and day-ahead markets. The latter information is
available from the independent system operators. This period
is assumed to be h. At the start of the rolling time,
we assume that the wind-power forecast becomes available
from WRF for the next 24 h. At this point, the stochastic
unit commitment problem is solved by using the current
wind-power outputs and the future fore-
casts , where is the current time step.
The solution of this problem gives the commitment profiles
over the 24-h rolling horizon. At each step inside the rolling
horizon , the horizon is shrunk by one time step
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, and the stochastic economic dispatch is solved over
the remaining horizon with the new, true wind power but the
same WRF forecasts of the current day. Each of these shrinking
horizon problems gives the current power outputs and
at current time .

D. Inference Analysis

In the above stochastic formulation, the wind-power outputs
are assumed to have a probability distribution . In most sto-
chastic optimization studies, this distribution is assumed to be
known. As seen in Section II, obtaining this distribution is part
of the modeling task. Since many different forecast models (au-
toregressive, ANN, physics based) can be used to construct the
error distribution, there is not a unique distribution. From a prac-
tical point of view, we expect that such a distribution is able to
encapsulate the actual realizations of wind power and has tight
confidence intervals. We model the wind speed distribution by
propagating an assumed Gaussian distribution of the initial state
conditions through the WRF model. Because of the complexity
of the model, we are limited to a single batch of a few (less than
100) samples. From a stochastic optimization point of view, this
is an issue because we are not solving the problem with the full
distribution. Consequently, we must perform an inference anal-
ysis to assess the quality of the solution.

1) Computation of Confidence Intervals: The two-stage sto-
chastic UC problem with fixed binary variables can be expressed
in the following abstract form [11]:

(13)

Here, are the first-stage decision variables, and
is the second-stage cost. We assume that the prob-

ability distribution of has finite support; that is, has a
finite number of scenarios with probabilities

, so we have , where

(14)
Here, are the second-stage decision variables, and are the
realizations of the wind-power outputs. Since is a very large
number, it is impractical to solve the stochastic problem exactly.
Therefore, given a fixed number of realizations from
WRF, we solve the approximate problem

(15)

This smaller problem is known as a sample-average-approxima-
tion (SAA) of the original problem (13), which is usually com-
putationally intractable. We seek to estimate lower and upper
bounds of the true optimal solution (using the entire set of
realizations) and their corresponding confidence intervals. Here,
we use the methodology put forth in [11]. A lower bound can
be estimated generating batches, each of size

, and we can then solve (15) for each batch. If we denote
as the optimal cost of each SAA problem, we can esti-
mate the lower bound as . The
sample variance estimator is given by

. The mean and variance can be used
to construct confidence intervals of the lower bound. To estimate
the upper bound, we pick a given value for the first-stage vari-
ables and generate a new set of batches of data.
We then evaluate (13), leading to . Note that each eval-
uation involves the solution of the second-stage problem (14).
As before, we have the mean and

variance .
2) Weighted Average Sampling: The inference analysis task

requires multiple batches of realizations. As expected, obtaining
these from WRF is not practical. Here, we present a heuristic
resampling technique to avoid this limitation. To create new
time series from the existing batch of WRF realizations, we ex-
press a new realization as a weighted average of the available
ones. Suppose the WRF model is , where

is the state vector at time . If we are given samples
and we can write , the propaga-

tion of is .
Assuming the variance of the samples is small, we can write

. We justify the computation of weighted
averages of the time series by observing that

In other words, the weighted average approximates, to first
order, the nonlinear propagation of weighted samples of the
initial conditions. The weights are chosen to be Gaussian
near the unit vectors in the standard basis on a hyperplane

in the space.

IV. INTEGRATIVE STUDY

In this section, we integrate the wind-speed forecasts pro-
duced by WRF by following the procedure described in
Section II with the stochastic unit commitment/economic
dispatch formulations described in Section III. The entire
computational framework is sketched in Fig. 1.

A. Wind Forecast and Uncertainty Quantification

We use the WRF model to forecast the wind speed in a spe-
cific region that covers the state of Illinois. We set up a com-
putational nested domain structure including a high-resolution
sector that covers the target area and two additional domains
of larger coverage but lower resolution. The parent domains
supply the boundary conditions for the nested ones, and the
largest domain has prescribed boundary conditions from coarser
ones. This setup is illustrated in Fig. 2. A similar setup with
one coarse domain is described in [23]. We generate six en-
semble data sets, each containing the predicted wind speed for
Illinois corresponding to domain # 3 in Fig. 2. Each ensemble
has members. The data are sampled every 10 min,
and each ensemble is evolved one day ahead. The starting time
of the experiment corresponds to June 1, 2006, 6:00 PM CT
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Fig. 1. Schematic representation of computational framework.

Fig. 2. Size and spatial resolution of the computational domain.

(local time), with each data set restarted from the reanalyzed so-
lution at time with . In other
words, each data set is started at the revalidation time with 12-h
increments.

1) Validation Using Wind and Temperature Data Measure-
ments: The weather station observations were obtained from
the National Climatic Data Center (NCDC), and their locations
are illustrated in Fig. 3(b). In Fig. 4, we show the wind-speed

predictions and measurements for Peru and Chicago, IL
[denoted by in Fig. 3(b)]. Each ensemble evolves for 24 h, and
new ones are started every 12 h. We remark that the wind-speed
measurements obtained from NCDC are given in miles per hour
rounded to the nearest integer. Doing so has the unfortunate ef-
fect of diminishing the wind variability and yielding more pes-
simistic than real validation results. Despite this, the wind-speed
uncertainty intervals generated by WRF capture the trends well,
with few exceptions. It is also clear from Fig. 4 that the forecasts
do not improve much when updated every 12 h instead of every
24 h. Note that the forecasts are not improved significantly at the
middle of the day, perhaps because measurements assimilated
during the day are not as informative as those assimilated during
the night, where the wind currents tend to be stronger. We have

Fig. 3. Wind farms (circles) and meteorological stations (triangles) locations
in Illinois. a) Wind farm location. b) Weather stations.

Fig. 4. Wind-speed ��� �� predictions and measurements (o) for Peru (left,
��� ���	� 
 ���
, �� 
 ����) and Chicago (right, ��� ���	� 
 ����,
�� 
 ����), IL. The vertical dashed lines denote the beginning of a new 24-h
prediction window; different colors are used to indicate ensembles started at
different times.

also observed that the wind-speed trends are much more diffi-
cult to predict than temperature trends. This point is enforced
by the correlogram for the temperature and wind speed at Peru,
IL, shown in Fig. 6, where it is clear that the time correlations of
wind speed decay more quickly than those of the temperature.

We present validation results at six active wind-farms in the
state of Illinois to analyze their magnitude and correlation struc-
ture. The order of the windows goes from left to right and coin-
cides with the wind-farm location numbering shown in Fig. 3.
Currently, the power produced by wind turbines depends on
the wind speed at elevations of about 40–120 m. The wind-
speed fields at these heights can be extracted from WRF. Un-
fortunately, the NCDC data available for validation are reported
only at 10 m. Obtaining real wind-speed data at higher alti-
tudes requires access to proprietary databases of operational
wind farms. The wind-speed fields at 10 m above the ground
for three consecutive days of June 2006 are presented in Fig. 5.
The WRF realizations are able to capture the general trends of
the actual observations at all locations. In addition, they are able
to encapsulate the observations. Note that the wind speed is rel-
atively low at this height. The maximum average is around 6–7
m per second. We have found that the wind speeds reach a max-
imum average of around 10 m per second at 100 m in the studied
region. In addition, we have observed that the uncertainty levels
increase significantly at this height as a result of the larger range
and variability. This increase is also expected because most of
the wind speed data assimilated in WRF is near ground level.
The 100 m profiles are not presented here because of space re-
strictions. For more details, please refer to the technical report
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Fig. 5. Wind-speed realizations for six wind farm locations in Illinois at 10 m
and observations (dots) at nearest meteorological stations. Vertical lines repre-
sent beginning of day (12:00 AM).

Fig. 6. Correlogram for the wind and temperature measurements and simula-
tions at Peru, IL.

Fig. 7. Spatial correlation for the wind field for wind farm #8 on June 5, 1:50
AM, denoted by “X.” The circle markers denote the other wind farms in Illinois.

[4, Section 4.1]. In Fig. 7, we show the spatial correlations of the
wind speed for a particular wind farm on June 5, 1:50 AM, as
inferred from the 30-member WRF ensemble simulation. The
wind speed is highly correlated over the studied region, and it
has a nontrivial spatial structure.

2) Implementation Considerations: In this study, we used
version 3.1 of WRF [17]. The ensemble approach taken for es-
timating the uncertainty in the weather system is highly paral-
lelizable because each scenario evolves independently through

Fig. 8. Scalability of WRF on the computer cluster Jazz for 24 h.

WRF. The most expensive computational element is the evo-
lution of each sample through the WRF system. We therefore
consider a two-level parallel implementation scheme. The first
level is a coarse-grained task decomposition represented by each
sample. A secondary finer-grained level consists in the paral-
lelization of each sample. This approach yields a highly scalable
solution. The simulations were performed on the Jazz Linux
cluster at Argonne National Laboratory. Jazz (now decommis-
sioned) had 350 compute nodes, each with a 2.4-GHz Pentium
Xeon with 1.5 GB of RAM and used Myrinet 2000 and Ethernet
for interconnect. Our running times given in Fig. 8 indicate that
around 32 CPUs were sufficient to generate forecasts with WRF
in a closed-loop UC/ED setting. The times also suggest that, in
order to generate forecasts every hour, one would need about
500 CPUs.

B. Economic Study Unit Commitment/Economic Dispatch

Because of the lack of detailed design data of thermal and
wind-power units in the open literature, we have constructed
an artificial simulation study. We first describe the thermal and
wind-power assumptions used and then discuss our results from
the simulation.

1) Power System Description: The thermal power system
specifications used in this work are based on those reported in
[3]. The system contains a total of ten thermal generators with a
total installed capacity of 1662 MW. The peak demand is 1326
MW. The ramp limits of the units are not reported, so we have
assumed them to be 50% of the corresponding maximum ca-
pacity. The reserve requirements are assumed to be 10% of the
demand. To simulate increasing level of wind power adoption,
we increase the number of wind turbines at 12 existing wind
farm locations in Illinois.

2) Results: To generate wind-power forecasts, we propa-
gate the wind-speed observations and the WRF realizations at
a height of 10 m through a typical wind-power curve with a
maximum capacity of 1.5 MW. The nominal curve has a cut-in
speed of 3 m per second and reaches the rated capacity at 12
m per second. The wind-speed observations, forecast, and en-
sembles used are summarized in Fig. 5. As previously men-
tioned, we used the height of 10 m because the NCDC data used
for validation are reported only at this level. As expected, the
wind speeds are relatively low at this level, thus leading to small
power outputs. Instead of using the wind speed WRF forecasts at
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Fig. 9. Wind power realizations for six wind farm locations in Illinois at 10 m
and observations (dots) at nearest meteorological stations. Vertical lines repre-
sent beginning of day (12:00 AM).

100 m, we have kept the 10-m WRF forecasts and observations
and mapped these using a shifted power curve obtained by dis-
placing the nominal cut-in speed from 3 to 2 m per second. With
this, the rated capacity is reached at around 11 m per second.
This strategy allowed us to obtain more consistent validation
results for wind power compared to linear interpolation of the
wind-speed observations. The resulting wind-power realizations
and observations are presented in Fig. 9. The wind-power distri-
bution is clearly affected by the nonlinear structure of the power
curve, increasing the spread of the distribution. The WRF real-
izations are able to encapsulate the actual power observations.
The largest differences are observed at the beginning of the third
day.

We have run the closed-loop UC/ED system assuming a
rolling horizon and a forecast frequency of 24 h. The ED
problem runs every hour. A total of 30 WRF realizations are
used to solve the stochastic problem. The resulting MILP
problems are implemented in AMPL and are solved with the
CBC solver from the COIN-OR repository. The MILP contains
38 651 variables from which 240 are binary, 783 equality
constraints, and 40 747 inequality constraints. The average
solution time for the stochastic UC problem in a quad-core Intel
processor running Linux is about 9 min in cold-start mode. The
solution time of the economic dispatch problem is less than
10 s. The results for the 20% penetration study are presented
in Figs. 10 and 11. In Fig. 10, we present the policies for the
power levels of six thermal units. The solid lines represent the
predicted and the realized power profiles, while the gray lines
represent the forecasted realizations at the beginning of the day.
We notice that the sensitivity of the power levels of some units
to the uncertainty of the wind power is very small. Generators
#2 and #5 are the most sensitive, while generators #3 and #4
exhibit no sensitivity. We have found that the sensitivity levels
depend strongly on the design characteristics and prices of
the generators. We have also found that the optimal cost of
the stochastic strategy over three days of operation is only
about 1% larger than that of the perfect information strategy.
We also performed an inference analysis using the resampling
strategy of Section III-D for the first day of operation using

different batches. The upper bound mean was found
to be with variance .
The lower bound mean was found to be
with variance . Both variances are less

Fig. 10. Closed-loop profiles for thermal units. Solid thin line is optimal profile
(with perfect information), solid thick line is stochastic UC solution, and thick
gray lines are planned scenarios at the beginning of each day.

Fig. 11. Closed-loop total power profiles obtained with stochastic UC formu-
lation. Top thick line is demand profile, medium thick line is the implemented
thermal profile, gray lines are planned realizations at beginning of each day,
bottom thick line is actual total wind power, and adjacent gray lines are forecast
profiles.

than 0.25% of the mean cost. The smaller variances indicate
that 30 WRF realizations might be sufficient to estimate the
optimal cost accurately. Note, however, that the mean of the
upper bound is lower than that of the lower bound. This can
occur because the estimates are produced on different scenarios
(the estimates would be exactly equal to each other if used
with the same scenarios). It indicates the presence of a bias
in the estimates which has been noted in other applications
of stochastic programming [11]. This bias can be reduced
using variance reduction techniques such as Latin Hypercube
sampling instead of Monte Carlo sampling and by increasing
the number of scenarios [11]. We have also found that updating
the WRF forecast every 12 h instead of every 24 h does not
bring important economic benefits. The reason is twofold:
minor improvements in forecast accuracy, as pointed out in
Section IV-A, and the properties of the power system under
consideration. A different outcome could be obtained with a
different generator mix.

In Fig. 11, we present the profiles of total aggregated (sum
over the total units) demand, thermal power, and wind power.
The solid lines represent the predicted and the realized power
profiles while the gray lines represent the forecasted realizations
at the beginning of the day. The top solid line is the daily de-
mand profile, which is assumed to be constant. Note that the ag-
gregated wind-power profile (bottom) does not follow a strong
periodic trend. Nevertheless, the WRF realizations are able to
encapsulate the actual profiles (solid lines) during the first two
days. As a result, the optimizer is always able to satisfy the load,
even for an adoption level of 20%. On the third day, however, we
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see a significant mismatch between the forecasted wind power
and the realized one in the first 12 h of operation. In this case,
the reserves are sufficient to satisfy the load. This effect could
potentially be ameliorated by inflating the initial conditions of
the WRF ensembles, but it cannot be predicted a priori. Thus,
a high-frequency and adaptive inflation/resampling procedure
should be added to the system. We also found that a determin-
istic strategy (using only the WRF forecast mean) is not able
to sustain adoption levels of more than 10% even with the allo-
cated reserves. We observed that increasing the adoption levels
increases the startup and shutdown costs, but these are negli-
gible (on the order of $10 000) with respect to the total produc-
tion costs.

V. CONCLUSIONS AND FUTURE WORK

We presented a computational framework for the integration
of the state-of-the-art WRF model in stochastic unit commit-
ment/economic dispatch formulations that account for wind-
power uncertainty. We extended the WRF model with a sam-
pling technique implemented in a distributed-memory parallel
computing architecture to generate uncertainty information. In
addition, we developed a resampling strategy that avoids expen-
sive WRF simulations to perform inference analysis. Our sim-
ulated commitment study indicates that using WRF forecasts
and uncertainty information is critical to achieve high adoption
levels with minimum reserves. Our study illustrates an opera-
tional setting with real data, pointing out several issues and lim-
itations that are not found in idealized experiments using artifi-
cial forecasts and uncertainty information. For instance, we have
not found significant benefits of updating the WRF forecasts in
intra-day operations. In addition, the numerical experiments in-
dicate that a relatively large number of CPUs are required to
generate forecasts and uncertainty information at a higher fre-
quency than 12 h. We emphasize that the integrative frame-
work presented here is preliminary and does not consider more
detailed issues such as intra-day rescheduling of unit commit-
ment, effects of updating wind power forecasts at higher tem-
poral resolutions (e.g., hourly), as used in the Danish power
system. These two factors affect the value of wind power fore-
casts during intra-day operation. Therefore, as part of future
work, we are interested in developing techniques to generate
forecasts at higher spatial and temporal resolution. In addition,
we are interesting in generating wind-power forecast models by
fusing WRF wind-speed forecasts and operational wind-power
data. Thanks to our open access to WRF, our framework is
highly flexible and allows us to consider these extensions. Ad-
ditionally, we are interested in dealing with networks of real
size with hundreds of generators, transmission constraints, and
intra-day scheduling. To solve these challenging problems, we
are developing algorithms for the solution of stochastic opti-
mization problems in parallel computing architectures. This, to-
gether with variance reduction techniques, can enable the solu-
tion of large-scale problems with small statistical errors.
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